

X5R Dielectric, KGM Series

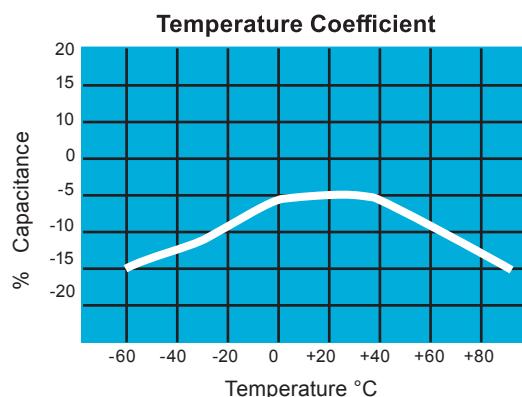
General Specifications

GENERAL DESCRIPTION

- General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within $\pm 15\%$ from -55°C to $+85^{\circ}\text{C}$
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to $100\mu\text{F}$)

HOW TO ORDER

KGM	03	A	R5	1E	101	M	N
Series	Size	Thickness	Dielectric	Voltage	Capacitance Code Code (in pF)	Capacitance Tolerance	Packaging
General Purpose Tin/Nickel Finish	02 = 01005 03 = 0201 05 = 0402 15 = 0603 21 = 0805 31 = 1206 32 = 1210 43 = 1812	See Cap Chart	R5 = X5R	0G = 4.0V 0J = 6.3V 1A = 10V 1C = 16V 1E = 25V 1H = 50V	Two Significant Digits + Number of zeroes eg. 106 = $10\mu\text{F}$ 103 = 10nF 470 = 47pF	J* = $\pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$	See Table Below



NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.
Contact factory for non-specified capacitance values.

PACKAGING CODES

Code	EIA (inch)	IEC(mm)	7" Paper	7" Embossed	13" Paper	13" Embossed
02	01005	0402	H	P	N	
03	0201	0603	H		N	
05	0402	1005	H		N	
15	0603	1608	T		M	
21	0805	2012		U		L
31	1206	3216		U		L
32	1210	3225		U		L
43	1812	4532		V		S

TYPICAL ELECTRICAL CHARACTERISTICS

X5R Dielectric, KGM Series

Specifications and Test Methods

X5R Specification Limits		X5R Specification Limits	Measuring Conditions (Complies with JIS C5101 / IEC60384)
Operating Temperature Range		-55°C to +85°C	Temperature Cycle Chamber
Capacitance		Within specified tolerance	Measure after heat treatment Capacitance Frequency Volt C \leq 10μF Frequency : 1kHz \pm 10% Volt : 1.0 \pm 0.2Vrms *0.5 \pm 0.2Vrms *:KGM02AR50J104, KGM02AR50J474, KGM03CR50J225, KGM03CR50J226, KGM03DR50J475, KGM03CR50G475, KGM05CR50J106
Dissipation Factor / Tanδ		Refer to https://spicat.kyocera-avx.com for individual part number specification	C $>$ 10μF Frequency : 120Hz \pm 10% Volt : 0.5 \pm 0.2Vrms The charge and discharge current of the capacitor must not exceed 50mA.
Insulation Resistance		Refer to https://spicat.kyocera-avx.com for individual part number specification	Apply the rated voltage for 1 minute, and measure it in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA.
Dielectric Strength		No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/ charge and discharge current limited to 50 mA (max) *: KGM31AR52A225: 200% of rated voltage
Bending Strength		No significant damage with 1mm bending	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds.
Solderability		Solder coverage : 95% min.	Soaking condition Sn-3Ag-0.5Cu 245 \pm 5°C 3 \pm 0.5 sec.
Resistance to Solder Heat	Appearance	No problem observed	Take the initial value after heat treatment.
	Capacitance Variation	\leq 7.5%	Soak the sample in 260°C \pm 5°C solder for 10 \pm 0.5 seconds and place in normal temperature and humidity, and measure after heat treatment. (Pre-heating conditions)
	Dissipation Factor / Tanδ	Within specification	Order Temperature Time 1 80 to 100°C 2 minutes 2 150 to 200°C 2 minutes
	Insulation Resistance	Within specification	The charge and discharge current of the capacitor must not exceed 50mA for IR and withstand voltage measurement.
	Withstanding Voltage / Dielectric Strength	Resist without problem	
Thermal Shock	Appearance	No visual defects	Take the initial value after heat treatment. (Cycle)
	Capacitance Variation	\leq 7.5%	Room temperature (3 min.) \rightarrow Lowest operation temperature (30 min.) \rightarrow Room temperature (3 min.) \rightarrow Highest operation temperature (30 min.)
	Dissipation Factor	Within specification	After 5 cycles, measure after heat treatment.
	Insulation Resistance	Within specification	The charge and discharge current of the capacitor must not exceed 50mA for IR and withstand voltage measurement.
	Withstanding Voltage / Dielectric Strength	Resist without problem	
Load Life	Appearance	No visual defects	Take the initial value after heat treatment.
	Capacitance Variation	\leq 12.5%	After applying *1.5 the rated voltage at the highest operation temperature for 1000+12/-0 hours, and measure the sample after heat treatment in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.
	Dissipation Factor / Tanδ	\leq Initial Value x 2.0 (See Above)	*Apply 1.0 times when the rated voltage is 4V or less. Applied voltages for respective products are indicated in the chart below.
	Insulation Resistance	Over 1000MΩ or 50MΩ·μF, whichever is less. *Exceptions Listed Below	The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.
Load Humidity	Appearance	No visual defects	Take the initial value after heat treatment.
	Capacitance Variation	\leq 12.5%	After applying rated voltage for 500+12/-0 hours in the condition of 40°C \pm 2°C and 90 to 95%RH, and place in normal temperature and humidity, then measure the sample after heat treatment.
	Dissipation Factor / Tanδ	Within specification	The charge and discharge current of the capacitor must not exceed 50mA for IR measurement.
	Insulation Resistance	Over 1000MΩ or 50MΩ·μF, whichever is less. *Exceptions Listed Below	
Appearance		No problem observed	Microscope
Termination Strength		No problem observed	Apply a sideward force of 500g (5N) to a PCB-mounted sample. note : 2N for 0201 size, and 1N for 01005 size.
Vibration	Appearance	No problem observed	Take the initial value after heat treatment. Vibration frequency: 10 to 55 (Hz) Amplitude: 1.5mm
	Capacitance	Within tolerance	Sweeping condition: 10 \rightarrow 55 \rightarrow 10Hz/ 1 minute in X, Y and Z directions: 2 hours each, 6 hours in total, and place in normal temperature and humidity, then measure the sample after heat treatment.
	Tanδ	Within tolerance	
Heat treatment		Expose sample in the temperature of 150+0/-10°C for 1 hour and leave the sample in normal temperature and humidity for 24 \pm 2 hours.	

Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated voltage)

Rated Voltage		Products
x1.0	6.3V	KGM02AR50J224, KGM02AR50J474, KGM03CR50J225, KGM03CR50J226, KGM03DR50J475, KGM05CR50J106, KGM05BR50J156, KGM05DR50J226, KGM21AR50J476
	10V	KGM02AR51A104, KGM03CR51A225, KGM15CR51A226
	16V	KGM03CR51C105, KGM05AR51C225, KGM05CR51C475, KGM15CR51C226
	25V	KGM05AR51E105, KGM05AR51E225, KGM05CR51E225, KGM05CR51E475, KGM15CR51E475, KGM15CR51E106, KGM21AR51E226
	35V	KGM05AR51V105, KGM15CR51V475, KGM15CR51V106
	100V	KGM31AR52A225
x1.2	6.3V	KGM03BR50J105
x1.3	6.3V	KGM02AR50J153-104, KGM03AR50J474
	10V	KGM03AR51A223-224, KGM05AR51A105-225
	16V	KGM05AR51C105

<Load Life / Load Humidity>Insulation Resistance : Over 10MΩ·μF

X5R / R5	03	KGM03BR51A105, KGM03CR51C224, KGM03CR51E224
	05	KGM05BR51A475, KGM05CR51A106, KGM05CR51V225

X5R Dielectric, KGM Series

Capacitance Range

Case Size	01005			0201			0402						0603						0805												
Soldering	Reflow Only			Reflow Only			Reflow/Wave						Reflow/Wave						Reflow/Wave												
Packaging	Paper/Embossed			All Paper			All Paper						All Paper						All Embossed												
(L) Length mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)			0.60 ± 0.09 (0.024 ± 0.004)			1.00 ± 0.20 (0.040 ± 0.008)						1.60 ± 0.20 (0.063 ± 0.008)						2.01 ± 0.20 (0.079 ± 0.008)												
(W) Width mm (in.)	0.20 ± 0.02 (0.008 ± 0.0008)			0.30 ± 0.09 (0.011 ± 0.004)			0.50 ± 0.20 (0.020 ± 0.008)						0.80 ± 0.20 (0.031 ± 0.008)						1.25 ± 0.20 (0.049 ± 0.008)												
(t) Terminal mm (in.)	0.10 ± 0.04 (0.004 ± 0.0016)			0.15 ± 0.05 (0.006 ± 0.002)			0.25 ± 0.10 (0.010 ± 0.004)						0.35 ± 0.15 (0.014 ± 0.006)						0.50 ± 0.25 (0.020 ± 0.010)												
Voltage:	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50		
Cap (pF)	100	101	A	A				A																							
	150	151	A	A				A																							
	220	221	A	A				A										A													
	330	331	A	A				A										A													
	470	471	A	A				A										A													
	680	681	A	A				A										A													
	1000	102	A	A				A	A									A													
	1500	152	A	A	A			A	A									A													
	2200	222	A	A	A			A	A	A								A													
	3300	332	A	A	A			A	A	A								A													
	4700	472	A	A	A			A	A	A								A													
	6800	682	A	A	A			A	A	A								A													
Cap (μF)	0.010	103	A	A	A			A	A	A								A	A	A											
	0.015	153	A															A	A	A											
	0.022	223	A					A	A	A	A							A	A	A									K		
	0.033	333	A					A										A	A	A									K		
	0.047	473	A					A	A	A	A							A	A	A									K		
	0.068	683	A					A										A		A									K		
	0.10	104	A	A				A	A	A	B						A											K	K	K	
	0.15	154						A	A	A	C	C						A	B	B	B	B	B	B	B	B	B	K			
	0.22	224	A					A	A	A	C	C						B	B	B	B	B	B	B	B	B	B	A			
	0.33	334																													
	0.47	474	A					A	A	A	H	A						H	B	B	B	B	B	B	B	B	B	A	A	A	
	0.68	684																	B	B	B	B	B	B	B	B	B	B	A	A	A
	1	105						B	B	B/C	C							B	B	B	B	B	B	B	B	B	B	A	A	A	
	2.2	225						C	B/C	C								A	B	B	B	C	C	C	C	C	C	A	A	A	
	4.7	475						C	D									B	B	B	B	C	C	C	C	C	C	A	A	A	
	10	106																C	C	C	C	C	C	C	C	C	C	A	A	A	
	15	156																													
	22	226																													
	47	476																													
	100	107																													
Voltage:	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50		
Case Size	01005			0201			0402						0603						0805												

Case Size	01005 (KGM 02)				0201 (KGM03)				0402 (KGM05)						0603 (KGM15)				0805 (KGM21)			
Thickness Letter	A	A	B	C	D	A	B	C	H	D	A	B	C	H	D	A	B	C	D	K	A	
Max Thickness (mm)	0.22	0.33	0.35	0.39	0.55	0.55	0.65	0.70	0.75	0.8	0.90	0.95	1	1.02	1.40	1.45						
Carrier Tape	PAPER		PAPER			PAPER			PAPER		PAPER					PAPER					EMB	
Packaging Code 7"reel	H	H	H	H	H	H	H	H	H	H	T	T	T	T	T	U	U	U	U			
Packaging Code 13"reel	P	N	N	N	N	N	N	N	N	N	M	M	M	M	M	L	L	L	L			
	PAPER												EMBOSSED (EMB)									

X5R Dielectric, KGM Series

Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size	1206								1210								1812												
Soldering	Reflow/Wave								Reflow Only								Reflow Only												
Packaging	All Embossed								All Embossed								All Embossed												
(L) Length mm (in.)	3.20 ± 0.40 (0.126 ± 0.016)								3.20 ± 0.40 (0.126 ± 0.016)								4.50 ± 0.30 (0.177 ± 0.012)												
W) Width mm (in.)	1.60 ± 0.30 (0.063 ± 0.012)								2.50 ± 0.30 (0.098 ± 0.012)								3.20 ± 0.20 (0.126 ± 0.008)												
(t) Terminal mm (in.)	0.50 ± 0.25 (0.020 ± 0.010)								0.50 ± 0.25 (0.020 ± 0.010)								0.61 ± 0.36 (0.024 ± 0.014)												
Voltage:	4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF)	100	101																											
	150	151.0																											
	220	221																											
	330	331																											
	470	471																											
	680	681																											
	1000	102																											
	1500	152																											
	2200	222																											
	3300	332																											
	3900	392																											
	4700	472																											
Cap (μF)	5600	562																											
	6800	682																											
	0.01	103																											
	0.012	123																											
	0.015	153																											
	0.018	183																											
	0.022	223																											
	0.027	273																											
	0.033	333																											
	0.039	393																											
	0.047	473																											
	0.068	683																											
	0.082	823																											
	0.10	104																											
	0.12	124																											
	0.15	154																											
	0.22	224																											
	0.33	334																											
	0.47	474	M	M	M	M	M	M	M													C	C						
	0.68	684																											
	1	105	H	H	H	H	H	H	H	H							E	E	E	E	E	E	E						
	2.2	225	H	H	H	H	H	H	H	H	A					L	L	L	L	L	L	L	L						
	4.7	475	H	H	H	H	A	H	A	H	A					J	J	J	J	J	A	A	A						
	10	106	H	H	H	H	A	H	H	H						J	J	J	J	J	A	A	A			J			
	22	226	H	H	H	A	H									A	A	A	L	A					J	J	J		
	47	476	H	H	H	H										L	L	L	L	L									
	100	107	H	H												L	L												
Voltage:	4	6.3	10	16	25	35	50	100	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size	1206								1210								1812												

Case Size	1206 (KGM 31)				1210 (KGM 32)				1812 (KGM 43)																
Thickness Letter	M	A	H	C	E	J	A	L	J																
Max Thickness (mm)	1.25	1.8	1.9	1.27	1.45	2.21	2.7	2.80																	
Carrier Tape	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB																
Packaging Code 7" reel	U	U	U	U	U	U	U	U	U																
Packaging Code 13" reel	L	L	L	L	L	L	L	L	L																
EMBOSSED (EMB)																									